Has your Equipment Been Condemned to Death? Bearing Storage Part 2 of 2

May 23, 2017

Bearings are a critical part of the design and function of most mechanical equipment. The majority of bearings never reach their intended design life due to improper selection, storage and installation. Unfortunately, this results in compromised equipment operation, lost capacity and increased costs. Do not condemn your equipment to death through improper bearing storage practices. Below are a few storage tips to help your facility ensure bearing reliability:

  • Store bearings in a clean, dry and low humidity environment (moisture from environment, gloves, etc can result in corrosion and/or etched sections creating fatigue on the bearing.) Avoid storage near direct sunlight, air conditioners or vents.
  • Eliminate shock/vibration.
  • Do not store bearings on the floor (will introduce contamination, moisture and vibration/shock.)
  • Store bearings on a pallet or shelf in an area not subjected to high humidity or either sudden or severe environmental changes.
  • Store bearings flat and do not stack them (lubrication and anti-corrosion material may squeeze out.)
  • Do not remove bearings from carton/crate or protective wrappings until just prior to installation in the machine (be careful of bearings in wooden crates as these could attract moisture – perhaps best to remove them from those cases.)
  • Do not clean bearings with cotton or similar materials that can leave dust and/or contamination behind (use lint free materials.)
  • Do not handle bearings with dirty, oily or moist hands.
  • Do not nick or scratch bearing surfaces.
  • Always lay bearings on clean, dry paper when handling.
  • Keep bearings away from sources of magnetism.
  • Do not remove any lubrication from a new bearing.
  • Lubricant in stored bearings will deteriorate overtime. The bearing manufacturer should specify shelf-life limits. These dates should be noted on the packaging and monitored to help ensure bearings are fit for use when needed.
  • The following visual inspections of bearing integrity should be completed periodically and just prior to use:
    • Examine packaging for indications that the bearing could have been damaged during shipment or storage. The bearing should be discarded or returned to the supplier if signs of damage are found.
    • Examine the grease or oil for evidence of hardening, caking, discoloration, separation, etc. Re-lubrication for continued storage or replacement maybe required.

Miss Part 1 of 2? Here it is: Has your Equipment Been Condemned to Death? Proper Lubrication

0

Has your Equipment Been Condemned to Death? Proper Lubrication Part 1 of 2

May 16, 2017

Lubricant received from suppliers has been shown statistically to contain high levels of contamination. Improper facility storage of that lubricant allows additional particle and moisture ingress. Improper dispensing of this lubricant introduces added contamination as well.  The accumulated water/moisture contamination causes the lubrication film to weaken and allows the rotating surfaces to move closer to each other during operation. The particle contamination then more easily damages gears, bearings, etc., and greatly shortens the life of your equipment. Contaminated lubricant can shorten equipment life by 75% or more.

To prevent this, ensure that lubricants are filtered and clean before entering your equipment. Store lubricants in a clean, dry and cool (temperature controlled) environment. Don’t leave lubrication containers open and exposed to the environment. Do not allow the containers to become a catch-all for dirt and moisture.

Proper lubrication controls do not have to be expensive. In fact, some of the greatest reliability improvements can be implemented quite inexpensively. Do not introduce equipment defects and condemn your equipment to death through improper lubrication practices and other poor maintenance practices.

1

The Importance of Measuring and Aligning Machine Tools for Precision Parts Manufacturing

May 9, 2017

Reposted from Easy-Laser®

Measuring squareness with Easy-Laser® E940

We had a little chat with Eskil Norberg at the company Maskincentrum, who has many years of experience from measuring and aligning machine tools for the manufacturing industry in Sweden.

Why is measuring so important?
Because you must be able to predict the level of precision you can achieve for manufactured parts, especially when it comes to large and complicated items, items that can be tough to measure, and also costly to recover if anything goes wrong.

What does your normal work procedure look like?
We always start with a thorough analysis of the problem, and then continue by choosing the best method and instruments for the specific job.

What type of guarantees do you give before performing a job?
That depends on each individual problem I would say. Normally we guarantee that we can identify the problem, and then present a solution for how to bring the machine to a level where it can produce within tolerance again.

Which measurement instruments do you use?
As I said, that depends on the problem, but for example an electronic precision level for levelling, interferometer laser for distance, speed, pitch and yaw measurements. Then a double ball bar for circular interpolation according to ISO 230-4. Easy-Laser® E940 is used for straightness, angles and spindle pointing direction. It has wireless communication which is very convenient and safe for us because the machine can be run with all safety guards on. The system also provides a measurement report directly on site thanks to the built-in documentation possibilities. This is highly appreciated by the client. Then we also use vibration analyzers to check for unbalances, bearing failures and sprocket damages.
Can you give us an example of a successful job?
Of course. Recently when we aligned with our Easy-Laser® on a machine for the manufacturing of steel beams 6 to 12 meters long [20 to 40 feet] we improved the accuracy of the parts from nearly rejection, i.e. 100% of the tolerance range, down to 10 to 15% of the tolerance range.
Anything else you would like to share with us on what is important when checking and aligning machine tools?
First you must understand the effects that follow on the different error conditions in the machine and how they affect the finished products. Always start from the ground up when adjusting the machine, followed by adjustments dependent on previous adjustments. What I try to say is you must adjust in the right order. You should also be aware of how possible electronic compensations affect the machine and its measurement result, so these don’t make the problem worse or maybe disguise any mechanical problem. So, always start from the ground up with the geometry of the machine, that’s my advice. To measure is to know!
Comments Off on The Importance of Measuring and Aligning Machine Tools for Precision Parts Manufacturing

Ultrasound Provides Inspection Insight

May 2, 2017

On a recent plant visit, our solutions provider Bob Dunn with I&E Central, Inc. used the SDT 270 ultrasound instrument and a contact sensor to inspect and capture waveforms on a series of valves on an automated manufacturing machine. The results were a revelation!

These valves open every 0.25 seconds and pass a brief pulse of air into the process. There were six valves, a 3 second signal was acquired on each. When we viewed the .wav files, one was significantly different from the rest,  4 examples are shown. Valve # 5 was passing a “double” pulse on most of its cycles.

Comparing signatures or levels on like components is a valuable diagnostic approach. At this point, the underlying cause has not been determined, but it is likely a worn component, and the valve should at the least be inspected further and possibly replaced. The failure of one of these valves would stop production on a high speed automated line.

Properly applied, ultrasound gives you great insight into many types of assets!

Comments Off on Ultrasound Provides Inspection Insight

EMBA Machinery AB uses Easy-Laser® Measurement Systems throughout its Production

April 25, 2017

Reposted from EASY-LASER® blog

EMBA Machinery is a Swedish manufacturer of converting machines for the corrugated board industry. They acquired a measurement system from Easy-Laser® in 2015. Their machines can be found within the packaging industry all over the world. Thanks to their reliable function, short set-up time and high manufacturing speed, EMBA’s machines are renowned for high productivity and product quality.

WHAT DO EMBA’S MACHINES DO?
Stefan Stålhandske, Production technician at EMBA Machinery, answers:
To put it simply, they supply a sheet of corrugated board with flex-o-graphic printing, before creating slots, punching, gluing and folding the sheet to produce a flat box. The final packaging has to be of the very best quality, as it is often the first thing you see when you purchase goods. The quality demands mean that the packaging also has to be strong, i.e. the corrugated board has to retain its strength through the conversion process. It must protect the packaged product during transport and handling, and it has to be stackable. It must be able to be produced quickly, and changing over the machines to a different format must also take place rapidly. Some of EMBA’s machine models produce up to 440 sheets per minute. Try to picture that!

THERE ARE STRINGENT DEMANDS REGARDING PRODUCT QUALITY, MACHINE AVAILABILITY AND MANUFACTURING SPEED. HOW DOES THIS INFLUENCE THE IMPORTANCE OF THE MACHINES’ QUALITY?
The machines are made up of many mechanical parts, both fixed and moving parts in the form of linear guides and rotating components. Many parts are dependent on one another. EMBA places stringent demands on itself and its suppliers. A separate measurement department checks machined components. Installation procedures are based on combined experience as well as generally applied requirements and tolerances. Many machine parts were previously manufactured in our own production premises in Örebro, which entailed a very high level of control of manufactured components and traceability to the machines in which they were produced. We now have a number of suppliers who have to manufacture to the same high level of accuracy, which has meant that we have been forced to develop new procedures and find new control tools.

WHY WAS THE DECISION TAKEN TO ACQUIRE LASER INSTRUMENTS?
The equipment was principally procured in order to quality-assure and guarantee that all machine units are installed correctly with regard to the alignment of the stands hole center to hole center, as well as with regard to their squareness and parallelism. Previous measurement methods such as cross-measurement and measurement using specially manufactured tools must be replaced to achieve a better method of handling and documenting measurement results. We also considered that the equipment can provide us with the possibility in future of measuring the entire machine line. Many of the machine components are large and heavy, and require a mobile measurement system.

This is how machine components were cross-measured previously.

WHY DID YOU CHOOSE EASY-LASER®?
EMBA’s development department got to know the product at an earlier meeting at an industrial fair. The way we were received by Easy-Laser®, along with the versatility the instruments have to offer, made it an easy decision, I would say.

Flatness measurement of machine end after machining.

YOU MENTIONED VERSATILITY – WHAT MEASUREMENTS DO YOU CARRY OUT?
Flatness measurements on large, heavy components, as well as straightness measurements on long beams with linear guides. During installation, we align machine ends with the aid of hole centering/shaft alignment. We also measure straightness and squareness at this time, as well as parallelism between various linear movements. These measurements are performed with an E720 shaft/geo system supplemented with brackets. To measure parallelism between rolls, we have opted to supplement the system with the E975 Roll alignment kit.The instruments have also been used to perform measurements in machine tools and in order to check that diabase surface plates are level. So yes, versatility really is the right word.

Checking roll parallelism using the Easy-Laser Roll alignment kit.

HOW HAS KNOWLEDGE OF HOW TO USE THE INSTRUMENTS BEEN SECURED?
The software is user-friendly, but many of the users have never operated this type of equipment before. As a result, two training sessions have been conducted with Easy-Laser®, lasting a total of 4 days. The training has been conducted at EMBA’s premises, in machines under construction. The training, which intersperses theory with practical exercises, was divided up such that the participants began with basic geometrical measurements and hole centering in the first session. During the second session, the focus was on E975 and measurement of roll parallelism, as well as functionality checking of detectors and levelling of laser transmitters.

HOW WERE THE MEASUREMENTS PERFORMED BEFORE AND WHAT ADDED VALUE DOES EASY-LASER PROVIDE?
In some of the measurements, we have replaced devices and dial indicators. The measurements are performed more rapidly using the laser instrument, and if you are unsure of measurement data, it is easy to repeat the measurement. Above all, however, the measurements are more reliable. For example, we have linear guides installed on beams that have to move in parallel with other linear guides installed on other beams. When we measured these before using dial indicators, we were unable to capture local deviations in the same way as now.

The linear guides can be parallel, but both beams may be crooked at the same place.

Our laser instrument now gives us the opportunity to pinpoint these deviations as well.
In some cases, earlier measurement procedures have been replaced so that we now measure the machine from different positions instead, which are more relevant for the machine’s conditions. Some measurements have not been conducted previously. The fact that we can now perform these measurements provides us with a basis for discussions with our suppliers and contributes to our work of consistently improving our quality.

Straightness measurement of linear guide with laser transmitter D22 from system E720.

EMBA NOW USES THE ROLL ALIGNMENT KIT E975 TO MEASURE THAT THE ROLLS ARE PARALLEL WITH EACH OTHER. WHAT HAPPENS IF THEY ARE NOT PARALLEL?
Some of the most critical rolls are located in the printers. If the rolls are not correctly aligned, this can result in the print being positioned incorrectly on the package, which is unacceptable. If the feeder table is not aligned with the machine line, this results in a crooked printed image, slanting slots, slanting punching and a folding result that is outside of the stipulated tolerances, all of which are also entirely unacceptable. As EMBA’s machines are renowned for their good range of formats as well as their high machine speed, the machine alignment from unit level to the overall machine line is an important aspect in achieving a good end result, i.e. a perfect box.

HOW WAS ROLL PARALLELISM CHECKED PREVIOUSLY AND WHAT IS THE ADVANTAGE OF E975?
When building units, we relied on the cross-measurement method as well as levelling with the aid of a precision level. The cross-measurement method is difficult, as access to reference points can be difficult or non-existent. When installing machines, we rely on specially manufactured spacers between the units in order to achieve parallelism as well as precision levels for levelling. Where possible, we can use tape measures to take measurements covering two separate rolls. With the laser instrument, we have the potential to measure all or parts of the machine, in order subsequently to monitor any adjustment of rolls in “live” mode.

The feeder table is another part of the machine that is measured with Easy-Laser®. Here the aim is to check e.g. that the rolls are parallel and at right angles to the table.

DURING SHIPPING, YOUR MACHINES ARE SPLIT INTO SMALLER UNITS IN CONTAINERS, AND ARE REASSEMBLED ON SITE ON THE CUSTOMER’S PREMISES. THIS MUST PLACE GREAT DEMANDS ON YOUR TECHNICIANS?
Absolutely! Prior to handing over to the customer, we perform tests in accordance with a special test protocol. The tests are performed under production-like conditions, for example with measurements being taken regarding register variations in the positioning of printing, slots and punches. The position of printing, slots and punches must be able to be repeated within the tolerances, regardless of machine speed. In future, new measurement methods with the aid of the newly acquired laser instrument will ensure better control of the machine set-up, which ought to generate a faster and safer start-up of production in the EMBA machine.

Thank you Stefan for giving us the opportunity to hear how you use Easy-Laser®!

Comments Off on EMBA Machinery AB uses Easy-Laser® Measurement Systems throughout its Production