The Importance of Vibration Analysis

February 20, 2018

In today’s fast-paced competitive business world, manufacturers are seeking every competitive advantage they possibly can to increase their production and minimize costs while maintaining product quality. The identification of defects within a machine, reducing equipment failures and unscheduled downtime is increasingly demanded of condition monitoring technologies.

Vibration analysis has proven to be one of the most effective tools for identifying mechanical and electrical faults within machinery. Most vibration programs use a combination of on-line monitoring and offline (walk around) monitoring. Off line programs require the resources of a trained technician to walk from machine to machine to collect the vibration data.

The primary goal of vibration analysis is to identify faults within a machine and then alert personnel that some type of action needs to occur. Problems start to occur when the needed frequency of the data collection is not aligned with the maintenance strategy. A machine’s criticality, its risk priority and its failure modes establish the frequency required; however, far too often frequency is determined by the availability of a local contractor, internal staffing or, even worse, on how much money will be saved if the frequency is changed from monthly to quarterly?

 

Today’s on-line systems have the ability to provide continuous monitoring and can send alarm notifications which can be incorporated into a site’s process control system so operators are alerted of a problem.  Some systems can be configured to distribute emails or even send text messages to specific individuals based on an alarm state.

Most vibration analysis systems today also have the ability to monitor and alarm off-process data such as temperature, pressure, voltage, current, flow or speed and can provide alarming if a process measurement goes outside of a predefined range.

Some of today’s on-line systems can incorporate on-board logic and decision making and some vendors offer machine diagnostics so that data is analyzed and screened for alarm violations automatically.  Data storage can be accomplished by the end user locally or the data can be stored and accessed via the cloud.  Utilizing a cloud server allows Reliability Engineers, Vibration Analysts or Condition Monitoring Contractors the ability to analyze and view data, alarms, trends and reports from anywhere in the world.

The “Industrial Internet of Things” (IIOT) is changing the way vibration data is viewed and managed.  Developments in Artificial Intelligence, Smart Machines, Embedded Intelligence, Machine Learning and Data Analytics are changing and significantly affecting how condition monitoring data is collected, processed and presented to users.

0

Could’a – Would’a – Should’a in Facility Maintenance Industry

February 13, 2018

How many facilities only collect vibration data when it doesn’t interfere with other activities? So often collecting and analyzing data is only one part of a given person’s responsibilities and workloads dictate that the collection and/or analysis take a back seat. When this happens, machine problems are not detected and therefore not reported for corrective action to be taken. If a machine then fails management has all the right to ask why the problem was not found and reported, even if management itself is the reason the data was not collected or analyzed! Vibration data collected should also be analyzed in a timely manner (within two business days of collection) to allow for proper scheduling of any needed repairs; of course, if problems are detected while collecting data that are believed to be severe enough to merit immediate attention, then they should be reported immediately to the facility. Many analysts do not know how long it will take to approve, plan, order parts, kit out, and schedule the resources to execute the repair work. Therefore, one must collect, analyze, and report the data as soon as possible. Generally, you may find several problems in most facilities; however, if you hand in 20 or 30 reports to the Reliability contact, they can quickly be overloaded. I would collate and deliver all the necessary reports but would focus on the top 5 priority problems first, based on safety, criticality, severity, and production demand.

0

When “Square, Level, Plumb and True” Come Together in Rotating Machinery Installation

February 6, 2018

In rotating equipment installations, there are many tools employed by the concrete pouring team, the baseplate fabricator, the rotating equipment installer, the pipe fitter, the alignment team, etc., to get the job the done as effectively and efficiently as possible. “Square, plumb, level and true” is what allows those teams to work together.  “True”means something is exact or accurate.  In rotating machinery, true can encompass how accurately equipment is aligned, in flatness, straightness, or rotational centerline (coupling) alignment.

Cutting corners in square, plumb, level and true is non-negotiable.  If one team does not hold to this principle, it can cause significant problems for the rest of the teams in the form of delays involved in having to work around and remedy the alignment problem. We’ve heard the stories of machinery installations that have bolt-bound issues, pipes that don’t fit, baseplates that are warped, many resulting in a need for extreme soft-foot corrections.  These are all symptoms of some part of the installation not holding to square, plumb, level and true. When all teams abide by this principle of square, plumb, level and true, the installation will be more efficient, have fewer delays and ensure that no costly rework will be needed to undo incorrect installation.

The building is actually square, plumb and level. It is the parking lot that is not level.

 

 

Comments Off on When “Square, Level, Plumb and True” Come Together in Rotating Machinery Installation

My Spectrum Does Not Indicate Misalignment so my Machine is Aligned, Right?

January 30, 2018

Condition Monitoring Expert Tip #9 by Mobius Institute

No, sadly, that may not be correct. If the spectrum (and phase readings) indicate misalignment, then the machine will be misaligned. But if there is no indication of misalignment, the machine may still be misaligned. I know that may not make sense, but unfortunately it is true.

A number of experiments have been performed where real machines were misaligned and the vibration pattern did not change. The vibration pattern depended upon the type of coupling and other conditions, but the bottom line is that the only way you can be sure that the machine is precision aligned is to precision align the machine with a laser alignment tool.

We appreciate Mobius Institute for allowing us to share this tip with you!

Comments Off on My Spectrum Does Not Indicate Misalignment so my Machine is Aligned, Right?

Quick Tip to Help Locate Compressed Gas Leaks

January 23, 2018

Using ultrasound to locate compressed gas leaks is relatively easy, but it occasionally it can present some challenges. The reason ultrasound is so successful is that it is a high frequency, short wavelength signal that does not like to penetrate 2nd mediums. While performing compressed gas leak inspections, keep in mind that strong ultrasonic signals can bounce off most materials leading to false indications.

To overcome this challenge, turn your ultrasonic detector 180° and see if the signal is stronger coming from that direction.

Download Find-and-Fix Leaks Procedure

 

Comments Off on Quick Tip to Help Locate Compressed Gas Leaks