Blog

May 2017 – Processing Magazine

This validated condition monitoring technology is versatile and inexpensive with a low learning curve.


Solving asset reliability issues becomes stymied when leadership is ambivalent about the benefits of adopting multiple technologies for condition monitoring (CM). When they do adopt them, they quickly learn technologies alone are not enough without the manpower to deploy them. One colleague stoically relayed his frustration when he said, “There are never enough of us (manpower), but there are more of them (problems) every day.”

Monitoring asset condition cannot be carried out effectively with only one CM technology, yet many maintenance departments rely predominantly on data from “just vibration” or “just oil analysis,” for example. More than one failure mode threatens asset health, and not every symptom is detectable by the same method. Some organizations have a strong vibration program but not anything more. Others may see clearly with infrared thermal imaging but lack a good oil analysis solution. A broader focus nets greater results.

Implementing several CM technologies is practical but often restricted by available manpower, budget and lack of conviction from all departments. If this is your plant’s reality, perhaps start with the most versatile technology — the one that detects the most defects — with the shortest learning curve. Choose ultrasound first and build a program on that foundation.
Read my entire article to learn about Benefits of Ultrasound, Reliability & Operational Excellence and Where is Ultrasound Useful?

by Allan Rienstra - SDT Ultrasound Solutions

Reposted from EASY-LASER® blog

EMBA Machinery is a Swedish manufacturer of converting machines for the corrugated board industry. They acquired a measurement system from Easy-Laser® in 2015. Their machines can be found within the packaging industry all over the world. Thanks to their reliable function, short set-up time and high manufacturing speed, EMBA’s machines are renowned for high productivity and product quality.
WHAT DO EMBA’S MACHINES DO?
Stefan Stålhandske, Production technician at EMBA Machinery, answers:
To put it simply, they supply a sheet of corrugated board with flex-o-graphic printing, before creating slots, punching, gluing and folding the sheet to produce a flat box. The final packaging has to be of the very best quality, as it is often the first thing you see when you purchase goods. The quality demands mean that the packaging also has to be strong, i.e. the corrugated board has to retain its strength through the conversion process. It must protect the packaged product during transport and handling, and it has to be stackable. It must be able to be produced quickly, and changing over the machines to a different format must also take place rapidly. Some of EMBA’s machine models produce up to 440 sheets per minute. Try to picture that!
THERE ARE STRINGENT DEMANDS REGARDING PRODUCT QUALITY, MACHINE AVAILABILITY AND MANUFACTURING SPEED. HOW DOES THIS INFLUENCE THE IMPORTANCE OF THE MACHINES’ QUALITY?
The machines are made up of many mechanical parts, both fixed and moving parts in the form of linear guides and rotating components. Many parts are dependent on one another. EMBA places stringent demands on itself and its suppliers. A separate measurement department checks machined components. Installation procedures are based on combined experience as well as generally applied requirements and tolerances. Many machine parts were previously manufactured in our own production premises in Örebro, which entailed a very high level of control of manufactured components and traceability to the machines in which they were produced. We now have a number of suppliers who have to manufacture to the same high level of accuracy, which has meant that we have been forced to develop new procedures and find new control tools.
WHY WAS THE DECISION TAKEN TO ACQUIRE LASER INSTRUMENTS?
The equipment was principally procured in order to quality-assure and guarantee that all machine units are installed correctly with regard to the alignment of the stands hole center to hole center, as well as with regard to their squareness and parallelism. Previous measurement methods such as cross-measurement and measurement using specially manufactured tools must be replaced to achieve a better method of handling and documenting measurement results. We also considered that the equipment can provide us with the possibility in future of measuring the entire machine line. Many of the machine components are large and heavy, and require a mobile measurement system.

This is how machine components were cross-measured previously.

WHY DID YOU CHOOSE EASY-LASER®?
EMBA’s development department got to know the product at an earlier meeting at an industrial fair. The way we were received by Easy-Laser®, along with the versatility the instruments have to offer, made it an easy decision, I would say.
Flatness measurement of machine end after machining.

YOU MENTIONED VERSATILITY – WHAT MEASUREMENTS DO YOU CARRY OUT?
Flatness measurements on large, heavy components, as well as straightness measurements on long beams with linear guides. During installation, we align machine ends with the aid of hole centering/shaft alignment. We also measure straightness and squareness at this time, as well as parallelism between various linear movements. These measurements are performed with an E720 shaft/geo system supplemented with brackets. To measure parallelism between rolls, we have opted to supplement the system with the E975 Roll alignment kit.The instruments have also been used to perform measurements in machine tools and in order to check that diabase surface plates are level. So yes, versatility really is the right word.
Checking roll parallelism using the Easy-Laser Roll alignment kit.

HOW HAS KNOWLEDGE OF HOW TO USE THE INSTRUMENTS BEEN SECURED?
The software is user-friendly, but many of the users have never operated this type of equipment before. As a result, two training sessions have been conducted with Easy-Laser®, lasting a total of 4 days. The training has been conducted at EMBA’s premises, in machines under construction. The training, which intersperses theory with practical exercises, was divided up such that the participants began with basic geometrical measurements and hole centering in the first session. During the second session, the focus was on E975 and measurement of roll parallelism, as well as functionality checking of detectors and levelling of laser transmitters.
HOW WERE THE MEASUREMENTS PERFORMED BEFORE AND WHAT ADDED VALUE DOES EASY-LASER PROVIDE?
In some of the measurements, we have replaced devices and dial indicators. The measurements are performed more rapidly using the laser instrument, and if you are unsure of measurement data, it is easy to repeat the measurement. Above all, however, the measurements are more reliable. For example, we have linear guides installed on beams that have to move in parallel with other linear guides installed on other beams. When we measured these before using dial indicators, we were unable to capture local deviations in the same way as now.
The linear guides can be parallel, but both beams may be crooked at the same place.

Our laser instrument now gives us the opportunity to pinpoint these deviations as well.
In some cases, earlier measurement procedures have been replaced so that we now measure the machine from different positions instead, which are more relevant for the machine’s conditions. Some measurements have not been conducted previously. The fact that we can now perform these measurements provides us with a basis for discussions with our suppliers and contributes to our work of consistently improving our quality.
Straightness measurement of linear guide with laser transmitter D22 from system E720.

EMBA NOW USES THE ROLL ALIGNMENT KIT E975 TO MEASURE THAT THE ROLLS ARE PARALLEL WITH EACH OTHER. WHAT HAPPENS IF THEY ARE NOT PARALLEL?
Some of the most critical rolls are located in the printers. If the rolls are not correctly aligned, this can result in the print being positioned incorrectly on the package, which is unacceptable. If the feeder table is not aligned with the machine line, this results in a crooked printed image, slanting slots, slanting punching and a folding result that is outside of the stipulated tolerances, all of which are also entirely unacceptable. As EMBA’s machines are renowned for their good range of formats as well as their high machine speed, the machine alignment from unit level to the overall machine line is an important aspect in achieving a good end result, i.e. a perfect box.
HOW WAS ROLL PARALLELISM CHECKED PREVIOUSLY AND WHAT IS THE ADVANTAGE OF E975?
When building units, we relied on the cross-measurement method as well as levelling with the aid of a precision level. The cross-measurement method is difficult, as access to reference points can be difficult or non-existent. When installing machines, we rely on specially manufactured spacers between the units in order to achieve parallelism as well as precision levels for levelling. Where possible, we can use tape measures to take measurements covering two separate rolls. With the laser instrument, we have the potential to measure all or parts of the machine, in order subsequently to monitor any adjustment of rolls in “live” mode.
The feeder table is another part of the machine that is measured with Easy-Laser®. Here the aim is to check e.g. that the rolls are parallel and at right angles to the table.

DURING SHIPPING, YOUR MACHINES ARE SPLIT INTO SMALLER UNITS IN CONTAINERS, AND ARE REASSEMBLED ON SITE ON THE CUSTOMER’S PREMISES. THIS MUST PLACE GREAT DEMANDS ON YOUR TECHNICIANS?
Absolutely! Prior to handing over to the customer, we perform tests in accordance with a special test protocol. The tests are performed under production-like conditions, for example with measurements being taken regarding register variations in the positioning of printing, slots and punches. The position of printing, slots and punches must be able to be repeated within the tolerances, regardless of machine speed. In future, new measurement methods with the aid of the newly acquired laser instrument will ensure better control of the machine set-up, which ought to generate a faster and safer start-up of production in the EMBA machine.
Thank you Stefan for giving us the opportunity to hear how you use Easy-Laser®!

by Yolanda Lopez


Early last year Bob Dunn with I&E Central, Inc. was approached by a customer with a unique measurement challenge. They needed to align two sheaves, 1 meter in diameter, separated by 12 meters (about 40 feet). While there are a number of sheave alignment tools available in the market, they employ line lasers, and their maximum distances are about 10 feet. Beyond that, for this application there were physical barriers to projecting a beam right along the face or between the pulleys, so this required some application development.
They discussed with an associate and conceived a way to make this measurement using the standard detectors and programs on the Easy-Laser® E710 alignment system. The E710 is a high end shaft alignment system with point (rather than line) lasers and 2-axis detectors with a working distance of up to 20 meters (66 feet). It also includes some basic geometric programs including straightness.
The customer’s goal was to align the sheaves in both planes, “horizontal” and “vertical”, within 0.1°. Going back to college trigonometry, 0.1° expressed as a slope is 1.745 mils/inch or 1.745 mm/meter. We can easily measure and calculate that.
The two sheaves were vertically oriented on a long superstructure with beams and supports extending about 10” out from the faces of the sheaves.
Here is how they made the measurement:
They mounted one of the laser heads (the “transmitter”) on a magnetic base with a rotating head. This magnetic base was mounted on the superstructure of the machine near the center line of the stationary sheave, and aimed along the center line. (See the graphic associated with this document.) The detectors themselves were extended from the magnetic bases with pairs of 12″ rods so that we had a clear measurement line along the structure.
They bucked in our transmitter between points 1 and 7 (see graphic). We did not need to set to zero, we only needed the beam to hit the detector along the length of the measurement. Once bucked in, we used the straightness program and measured at points 1, 3, 5, and 7. Using points 1 and 3 as our reference line, the result indicated that the two sheaves were horizontally parallel within 0.05°, but were offset by about ½”.
Next they measured the vertical alignment. Without moving the laser transmitter, they swept the rotating head and measured the slope from point 2 to 4, as 6.028 mm/meter. Then they performed the same measurement between points 6 and 8 (the far sheave), measuring 6.022 mm/meter – nearly perfect alignment (0.0003°).
The E710 proved to be a flexible and powerful tool that can do much more than coupling alignment. This new customer is already identifying additional measurements for their new system.

by Ana Maria Delgado, CRL

As Published by Maintenance Technology Magazine March 2017 issue

Ultrasound ‘heard’ and confirmed electrical arcing in the termination-junction box of this vertical-turbine-pump-system’s motor.

 
When it comes to electrical systems, most failures can be attributed, in large part, to installation problems, water damage, insulation issues, or poor workmanship. Such failures pose a serious safety threat and have the ability to shut down operations entirely. Ultrasound technology is a proven way to deal with them. In short, this easily deployed predictive tool offers sites a means of identifying and, thus minimizing the impact of these problems.
Read the full case study and learn how Brian Franks from JetTech Mechanical located an electrical fault with the SDT270 ultrasound system at a major water municipality.

by Yolanda Lopez

The Easy-Laser E970 laser roll alignment system is a well-established product proven to be effective in many parallel roll alignment applications such as in printing presses, steel, aluminum and paper mills. We recently completed a roll alignment at a stainless steel roll slitting facility.
e970-image1
Setting the system up was fast and easy, from establishing a reference roll to creating new benchmarks.  Rolls were measured for both level and skew.
e970-image2
Corrections were done on-site with live monitoring.  The system was able to accurately measure traditionally challenging rolls with unusual surfaces, including rewinder rolls and non-magnetic rolls, such as the guide roll with a rubber surface.
e970-image3
The asset owner requested that the slitters and guides be checked and asked whether that was possible.  The versatility of this system allowed for such an operation.  By profiling the laser to a reference roll, the slitters were checked for alignment and the required adjustments were made.
e970-image4
The job was scoped for two days, yet the entire job with slitter alignment was completed in less than one day.  This provided the time to complete a roll alignment on an entirely separate finishing operation.
e970-image5
The proof of good parallel roll alignment lies in the results, after running the machine: the laser aligned rolls produce consistent material thicknesses to tolerance, thereby saving tens of thousands of dollars of potentially wasted money in scrap product, not to mention if a roll had to be scrapped for this process.  The E970 is an accurate performer whose versatility is straightforward by all measures™

by Daus Studenberg CRL

As Published by COMPRESSORtech2 Magazine October 2016 issue
by Karl Hoffower – Condition Monitoring and Reliability Expert for Failure Prevention Associates

Combining ultrasound and vibration sensing adds precision to recip valve analyses

Over the past decade, ultrasonic condition monitoring of reciprocal compressor valves has become more widely known. However, it does not seem to be widely used.
Ultrasonic testing measures high-frequency sound waves, well above the range of human hearing. These ultrasound devices record the high-frequency signals for analysis later. Trending valve cap temperatures is the most common condition monitoring technique for monitoring
compressor valve health.
Ultrasonic testing of compressor valves and vibration monitoring of rotating components are an informative, preventative-maintenance practice. Compressor valve deficiencies with opening, closing or leaking may be diagnosed using the ultrasound recording functions.
Steven Schultheis, a Shell Oil Co. engineer, addressed the issue in a paper presented at the 36th Turbomachinery Symposium in Houston in 2007.
“Trending valve temperatures have proven to be valuable in identifying individual valve problems, but are most effective if the measurement is made in a thermowell in the valve cover.” Schultheis wrote. “Ultrasound has proven to be the preferred approach to analysis of valve condition.”
Failure Prevention Associates completed an experiment with a major midstream gas transmission company to see if this type of condition monitoring tool can effectively find fault conditions well before other technology used.
Ultrasound meters (such as the SDT270 from SDT Ultrasound Solutions) have digital readouts that indicate the level of ultrasound detected. These devices have been used for decades to “hear” air, gas and vacuum leaks. The intensity or amplitude of the signal is expressed in decibels — microvolts. (dB[A] μV). The dB(A) is a common intensity unit for sound intensity; μV designates the engineering reference unit being used with a piezoelectric sensor.
Converting an airborne ultrasound detector with a contact sensor allows a technician to monitor what is happening inside a machine, whether it is a bearing, steam trap, or valve.
Ultrasound detectors are designed operate in a specific and narrow frequency band. Then through “heterodyning” step high frequency sounds down into an audible format that the technician can hear though headphones. During the heterodyning process the quality and characteristic of the original ultrasound signal is preserved.
Read full article complementary-condition-monitoring-boosts-reliability-article

by Yolanda Lopez

As Published by Uptime Magazine December/ January 2017 issue
Do No Harm: The Hippocratic Oath Applied to Reliability

The Greek physician Hippocrates (c.460 BC – c.370 BC) is credited with an oath that was meant to provide certain ethical standards a physician was to uphold. While maintenance is not of the magnitude as being a doctor, organizations would do well to apply portions of the Hippocratic oath to their maintenance practices. Two such examples are: “…to teach them this Art, if they shall wish to learn it, without fee or stipulation; and that by precept, lecture, and every other mode of instruction, I will impart a knowledge of the Art to my own sons, and those of my teachers, and to disciples…” and “I will follow that system of regimen which, according to my ability and judgment … and abstain from whatever is deleterious and mischievous.” This article focuses on the latter, “and abstain from whatever is deleterious and mischievous,” or in 21st century vernacular: Do no harm.”

Maintenance reliability professionals have a responsibility to their superiors to deliver results that improve the bottom line via increased uptime and productivity. But they also have a responsibility to those technicians who are expected to assist them in the process of increasing asset uptime and improving reliability. Regardless of your certification or the acronym attached to your signature block, without the technician’s solid understanding and performance of the basics, you will not achieve either goal. Two key ingredients of any reliability effort are precision installation and maintenance practices. Without them, you will find yourself replacing the same motors, pumps, etc., repeatedly.
From the reliability-centered maintenance (RCM) teachings of Stanley Nowlan and Howard F. Heap, both engineers at United Airlines, and John Moubray, the originator of RCM2, it is learned that there are six distinct failure curves. Furthermore, as many as 68 percent of failures can be attributed to infant mortality or failure induced at start-up/installation.

Figure 1: Failure patterns
Figure 1: Failure patterns

 
 
 
 
 
 
 

Read
the full article to learn how precision installation and maintenance practices are two key ingredients of any reliability effort.

by Ana Maria Delgado, CRL

lathealignment_final
Recently, I&E Central (along with a service partner) used the Easy-Laser E940 Machine Tool system to perform alignment on an automatic lathe similar to the photo above. The lathe has an automatic feeder for 20’ sections of tube stock which are supported alternately by V-rollers, and then clamped by “steady rests” while being machined. The objective of this job was to have the stock in perfect alignment with the rotational center of the spindle when supported by either V-rollers or the steady-rests. In addition, there is a pusher system that advances the stock into the collet. The movement of the pusher needed also to be aligned with the spindle center line. This was a challenging measurement made possible by the availability of a spindle laser which could be directed back through the collet.
Measurement Procedure:
A laser transmitter was mounted in the spindle with its beam directed through the collet. The laser was adjusted to the rotational center line, then the spindle was turned at 200 RPM for measurement. In this way the beam precisely marked the rotational center along the entire length of the machine.
The first measurement was the location of the center of each steady rest. A laser detector was mounted on a short piece of stock, which was locked in each steady rest for measurement. A center of circle straightness program was used to measure and adjust the position of each steady rest. These were adjusted “live” so that each steady rest held the stock in line with the spindle rotation.
Once completed, pk-pk deviation in the vertical plane was 0.0095”, in the horizontal plane it was 0.020”, well within the customer’s desired specifications.
The next step was measuring the straightness of travel of the pusher arm relative to the rotational center of the lathe. This was accomplished by grasping a similar piece of stock with the jaws of the pusher, then using the same program to measure and adjust its true position at 4 locations along its travel.
The final adjustment involved adjusting the V-rolls to support the tube stock in line with the center of rotation. This adjustment was actually done without the laser. A full length piece of stock was secured in the collet with the other end supported by the pusher. Each V-roll in turn was adjusted with shims so that it supported the stock precisely on the center-line. The customer tells us that the machine now runs smoother than it ever has.
The measurement and alignment of this machine section was never performed by the customer or any service contractor in that they had no way to make the measurements. The power and flexibility of the Easy-Laser E940 system made this a straightforward job that was completed in 1 day.
Special thanks to Bob Dunn with I&E Central, Inc. for sharing this case study with us!

by Ana Maria Delgado, CRL

As Published by Uptime Magazine August / September 2016 issue
The foundation of any great reliability effort is the reliability culture within the organization that sustains it. Everybody within the organization must be aligned with its ultimate goals and mission for the reliability effort to succeed. Therefore, the mission and values must be clearly communicated, with reasonable expectations for compliance.
A holistic approach to reliability-centered maintenance (Rcm) relies on good asset condition management (ACM). This, in turn, relies on accurate condition-based maintenance (CBM), which can only happen with good data. Planning and scheduling (Ps) personnel cannot do their job properly if the maintenance technicians do not feed good data into the system in a timely manner. So, one of the first steps must be to invest in a good enterprise asset management system (EAM) or computerized maintenance management system (CMMS), train all plant personnel in how to use it effectively and impress upon them how they as individuals are important to the overall reliability effort. Remember, the reliability effort relies as much on good data as the culture of cooperation that stands behind it and supports it. Everybody in the organization must understand the importance of their individual role in the wider mission of the organization and, in particular, their interaction with this data system.
Plant management must understand and respect the fact that the boots on the ground (i.e., their technicians and operators) are their best source of information. They are the ones that wrestle with the day-to-day problems and fix them. They know how the machines should sound, smell and feel. Respect their expertise and their opinions. Train your technicians. Invest in quality competency-based learning (Cbl). The knowledge and experience gained will pay off multifold in advancing the entire reliability effort. Give them the tools to do their job right. This means buying a good laser shaft alignment system, vibration analysis tools, and ultrasound leak and corona detection systems. This CBM approach will allow your organization to optimize the preventive maintenance effort (Uptime Element Pmo) required to deal with the problem.
ReliabilityChart
Read the full article to learn how you too can take your reliability efforts to the next level within your organization.

by Alan Luedeking CRL CMRP

March 2016 · Empowering Pumps Magazine
“Work smarter, not harder” is a statement we have all heard before, but who has the time to think about smarter ways to work when there is so much work to be done? Some maintenance professionals are so busy trying to keep their operation running smoothly that they often address equipment issues “reactively”. This might make maintenance teams feel more like “firemen” as they respond to in-the-moment needs. So how does a company become less “reactive” and more “proactive”?
Read the full article: Maximize Uptime with Asset Condition Management to better understand the key components of an Asset Condition Management (ACM) Program and how core technologies like Alignment, Balancing, Vibration Analysis, and Ultrasound Testing can help you increase uptime.

by Dave Leach CRL CMRT CMRP

May 2016 · Plant Services Magazine
Like a lot of reliability engineers, Joe Anderson, former reliability manager at the J.M. Smucker Co., appreciated – in theory – that precise pulley alignment is critical to preventing vibration problems and ensuring successful operations.

My understanding was, ‘Yeah, we need to do it,’ ” Anderson says. “But you always have these excuses.”

When the Smucker’s plant at which Anderson worked launched a dedicated vibration monitoring and control program a year-and-a-half ago, though, Anderson quickly became a convert to making precision alignment a priority.
The plant purchased a vibration analyzer (VIBXPERT) and laser alignment tool (the SheaveMaster Greenline) from Ludeca to help aid in identifying machine defects that appeared to be linked to vibration caused by misalignment. Laser alignment allowed for correcting vertical angularity, horizontal angularity, and axial offset – the three types of misalignment – simultaneously. Whoever was using the laser alignment tool, then, could be sure that adjustments made to correct one alignment problem didn’t create an issue on another plane.
Read entire article to learn how J.M. Smucker Co. made precision alignment a priority: Get your alignment in line: Don’t jiggle while you work

by Ana Maria Delgado, CRL

Reposted from RELIABILITYWEB®

  1. Assemble a team and identify applications for a program
  2. Justify needs by recognizing key areas where improvement can be benchmarked
  3. Set written goals for the program
  4. Establish how ROI will be measured
  5. Purchase quality ultrasonic inspection equipment
  6. Invest in certification training at both management and user levels
  7. Choose a leader to technically carry the program forward
  8. Establish a system to reward the successes
  9. Frequently review the progress as part of regular meetings
  10. Ensure everyone involved is 100% mentally invested in the program’s success

Tip from Hear More: A Guide to Using Ultrasound for Leak Detection and Condition Monitoring by Thomas J. Murphy and Allan R. Rienstra.
To learn more about airborne ultrasound,  download a chapter preview of Hear More.

by Allan Rienstra - SDT Ultrasound Solutions

As Published by BIC Magazine December 2015 issue
A world-class reliability program is not achieved overnight,  yet you must start somewhere. Your first step is to vest your entire human capital in its success. Reliability is a culture,  not a goal, and it flows from the top down. Therefore, executive sponsorship with integrity and enforcement is a must. Obtain buy-in to the culture of reliability from everybody in your organization, or the effort is doomed to fail. Start with this realization, and your reliability effort will ultimately succeed, and you and your stakeholders will reap its rewards.
The reliability workflow must be well organized and underpinned by a Computerized Maintenance Management System (CMMS). Let’s look at how it works in a world-class program.
Ultrasound analysis detects a bearing fault in a critical motor early in the P-F curve. The analyst enters this data in the CMMS and trends it. The analyst decides to request a work order with recommendations. This is Stage 1 in the work order process.
The work order is now reviewed by both maintenance and operations, thereby ensuring buy-in from operations as well. This is Stage 2. This review process ensures only truly needed or valuable work is approved. Also, older open work orders can be combined with this one to further streamline planned activity on the asset. For instance, an earlier work order was created to align the machine, but the work was never carried out, resulting in the bearing damage the ultrasound analyst has now detected. The review process would catch the older open order and add it to the present order. This would prevent the millwright from going out to align the machine tomorrow only to have a repair technician go out the following week and repair the motor but do no alignment on it. This review process tries to eliminate inefficiency, duplication and detrimental work sequences.
Stage 3 assigns the work order to the maintenance planner for action. Only approved and truly necessary work enters the planner’s backlog. The planner ensures work is properly prioritized. Two things are needed: The criticality ranking of the asset (ascertained from systems’ criticality analysis) and its operational criticality. Both of these factors can be multiplied together to create a more accurate prioritization of the workflow. The planner creates a new work plan if needed and should consult with maintenance supervisors and technicians; valuable insights may be gained into what parts, tools and equipment should be specified in the work plan. Next, the planner orders the maintenance, repair and operating materials (MRO) spares and tooling required to complete the job and verifies the parts are available and kitted (best practice). The planner should not concern himself with scheduling.
Now on to Stage 4: assignment to the scheduler. The scheduler allocates the HR and necessary time to accomplish the task, with a cushion for unforeseen complications. He too should consult with the maintenance supervisor and technicians to obtain cooperation and buy-in to the schedule. Coordination with operations is crucial. Operations  “owns” the equipment and must sign off on the schedule to bring the asset down.
Stage 5 assigns the order to the appropriate maintenance and electrical supervisors, who in turn assign specific tasks in the work plan to their respective repair technicians, electricians and millwrights, and verify MRO spares has delivered the parts kit to the proper location.
Now the work order enters Stage 6: the work execution phase. Once the technicians have completed the work, they report to their supervisors, who return the asset to active duty status in the system. Operations is notified the asset is ready for service, and MRO spares is notified of any unused parts and supplies that should be returned and reintegrated into the MRO spares inventory. Technicians and supervisors should feed their observations and data into the CMMS system.
Stage 7 sees the ultrasound analyst performing follow-up data collection on the asset to ensure all is well. The work now goes back to the planner to be formally closed. This ensures all important data has been accumulated and distributed within the system, enabling key performance indicators to be updated.
As good data accumulates, reliability engineering will use it to improve the entire reliability and maintenance process, discover frequent failure patterns, identify training needs, drive out defects, streamline production and help to improve the design process. As the plant becomes more efficient and productive, greater resources can be allocated to defect elimination and strengthening condition-based maintenance technologies, further impelling the transition to a proactive, reliability-centered culture. Reliability is a never-ending journey of continuous improvement.

by Alan Luedeking CRL CMRP

Guest post by Jeff Shiver, Founder of  People and Processes, Inc.
As a maintenance planning and scheduling professional, I am often asked how to schedule maintenance activities when production is 24/7 or 24/6. An important question is whether the 24/7 operation is driven in part by a lack of reliability or if the organization is proactive and actually capacity constrained. In either case, the challenge is finding windows for work with the equipment stopped or shutdown.

  1. Failure to identify smaller windows for work
  2. Give work to operators
  3. Lack of partnership between the operations and maintenance group
  4. Get the work done right
  5. Make resources available
  6. The right focus on preventive maintenance (PM)
  7. Identify failure
  8. Act, don’t react
  9. Don’t defer PM tasks
  10. Failure to take advantage of unplanned downtime for proactive work
  11. Manage the backlog
  12. Lack of effective coordination between the crafts

For more details, please read the full article.

by Yolanda Lopez

A facility just replaced several 1, 000 HP slurry pumps with a massive 4,  000 HP slurry pump at a pumping station. As part of this project, Ludeca supplied a WEARSCANNER particle counter that is installed on the oil return line just before the filter. This system reports partials per minute for different particle ranges and relays this data via Modbus to the process control computer. During the initial start-up the particle counter showed particles passing through the counter with the worst range reporting 6 parts per minute in the 100 to 125 micron range. The startup oil was changed and the filter replaced.  As a result, the particle count has now dropped to zero in all of the ranges.

by Greg Lee

A paper titled The Surprisingly Swift Decline of U.S. Manufacturing Employment by Justin Pierce suggests that the sharp decline in US manufacturing jobs is a result of imports from China. Regardless of the cause, it is a fact that US manufacturing has declined over the past several years. Along with the decline in jobs, there has been a decline in the technical skills needed for performing manufacturing jobs. The loss of technical skills is largely due to the fact that as manufacturing jobs declined, job training refocused to other areas such as service sector jobs. This all happened at a time when the baby boomers who were the backbone of American manufacturing began leaving the workplace in droves due to retirement. The age of the baby boomers is rapidly coming to an end; and due to the decline in manufacturing, there’s been no concerted effort to replace them.
Download my entire UPTIME MAGAZINE article: Where Have All the Bearing Scrapers Gone? 

by Bill Hillman CMRP

Now,  more than ever flatness checks for main bearing bore alignment in reciprocating compressors are critical to bearing and crankshaft life. Ariel Compressors have a strict tolerance for the top rail alignment and the ER-82 document provided by Ariel discusses this in detail. There are many ways to perform a flatness check so long as the equipment meets the Ariel guideline for accuracy. Many people have chosen the INCLINEO but the LEVALIGN EXPERT adds a new dynamic in versatility.
In Midland, Texas, Shamrock Field Services performs these alignments with the LEVALIGN EXPERT. When checking a large frame like an Ariel JGZ the LEVALIGN EXPERT gives the user consistent, reproducible measurements they can trust to make critical adjustments. During a recent job in Odessa, Texas the Shamrock group used their ROTALIGN ULTRA IS and LEVALIGN EXPERT to check both the coupling alignment and the top rail flatness of an electric drive motor and JGZ compressor in less than an hour. LEVALIGN EXPERT image

My experience is with both the INCLINEO and LEVALIGN EXPERT; let’s just say I am glad we purchased the right tool for the job. The LEVALIGN EXPERT is quick and very easy to operate. It cuts time and makes for a more proficient report. Hands down the LEVALIGN EXPERT is the way to go.” —Geoffrey Jameson, Shamrock Field Services

The initial setup of the LEVALIGN EXPERT for a top rail measurement is simple. Because the LEVALIGN EXPERT’s self-leveling laser adjusts to the surface plane automatically – the system can be put anywhere within line-of-sight for the rails to be measured. Either a magnetic plate or a tripod may be used to position the laser. Before placing the sensor on the rail via magnet, you want to make sure the rails are clean and clear of debris or excess oil. Once the rails have been cleaned the LEVALIGN EXPERT automated sensor is placed at the first point to be taken. The motorized sensor will lock into the laser and allow each point to be measured. Eight total points should be taken in no particular order.

I would recommend that if you are going to check the top rail of your compressor to use the LEVALIGN EXPERT, it will save time and headache in the long run.” —Dewayne Atwood, Shamrock Field Services

Taking measurements with the LEVALIGN EXPERT takes less than 5 minutes on JGZ and other large scale compressors due to the freedom of a powerful Bluetooth. With the measurement data recorded, adjustments can be made by viewing the information in the rugged ROTALIGN ULTRA computer. Several options are available for scale, 3-D view or Table view. These numbers can be plugged into the ER-82 spreadsheet or used in the Alignment Center software. Reporting may also be done in the field through the USB option.

Versatility in many work environments is a key factor to the completion of a job and the ease of use with the LEVALIGN EXPERT sure outshines the INCLINEO.” —Robert Beck, Shamrock Field Services

Special thanks to the team at Shamrock Field Services, a gas compression service company, for sharing with us their success with our products.

by Matt Hadad CRL

Being a successful condition monitoring (CM) analyst requires qualities such as intelligence,  dedication, a thick skin, willingness to help others, ability to focus, and more. Success in this profession is not easy. In fact, it can be argued that success is a constant struggle. The most successful CM analysts will have certain traits that are keys to their success; however, possibly the most important is the drive to “know” – to know what is causing that anomaly, defect, or early failure.
Read my entire article at PLANT SERVICES: Keys to Condition Monitoring Success

by Trent Phillips CRL CMRP - Novelis

One of the top priorities of any military organization is keeping soldiers fit for deployment upon demand. This usually involves exercises to maintain and increase job skill,  physical abilities, overall health and mental capabilities. Troops are encouraged and required to participate in activities that achieve these readiness goals. Why should your organization and position be any different? What are you and your organization doing to ensure fitness for job deployment each day? Are your employees trained to function like F Troop or Seal Team Six?
Download my entire UPTIME MAGAZINE article: Is your Company Fit for Deployment?

by Trent Phillips CRL CMRP - Novelis

A large gas turbine-compressor system experienced high vibration when load approached 92%. Customer demanded the promised 98% from the manufacturer. These compressors are used along a gas pipeline that moves natural gas from Texas to South Florida.
LUDECA was contracted to determine the stability (or lack thereof) of the turbine structure at 16 different locations on the turbine. 16 PERMALIGN triple prisms capable of simultaneously detecting vertical and horizontal displacement were affixed to strategic locations on the turbine (see Figures 1 and 2.)

Permalign Monitors Gas Turbine

Fig 1: PERMALIGN Triple Prisms Mounted on Gas Turbine

Permalign Triple Prisms Gas Turbine

Fig 2: Close-Up of PERMALIGN Triple Prisms Mounted on Gas Turbine

The absolute move of these locations was recorded by 16 separate PERMALIGN monitors mounted on sturdy pedestals rigidly affixed to the floor (see Figure 3.) One monitor was used per triple prism.
Permalign Mounted Sturdy Columns

Fig. 3: PERMALIGN Monitors Affixed to Sturdy Column Pedestals

After continuous monitoring and measurement over several hours,  it was found that the front turbine supports were not stable when the extra load was demanded.
Based on the findings, the manufacturer re-designed the front supports of the turbine to withstand the increase in loads.
With the successful solution obtained with the help of the exact positional change information supplied by the PERMALIGN system, the manufacturer was able to secure an order for several of these turbine-compressor systems.

by Pedro Casanova CRL

1 2 3 4 6