June/July 2011 • UPTIME

Analyzing only vibration response spectra is difficult since they often don’t clearly match wall chart and textbook examples.

As anyone who has practiced vibration analysis knows, vibration signatures obtained on routes are often far from the wall chart examples. The reason for this is that the vibration signatures collected and analyzed represent the response of a system due to a variety of different forces that act simultaneously to produce one signature.

Unfortunately, vibration analysts are actually interested in determining the individual forces that cause the response. Once the forces are accurately identified, only then can they be reduced or eliminated.
Take for example the force of unbalance. Wall charts and texts on vibration analysis represent mass unbalance as a running speed peak in the spectrum that dominates all other content. Also, these theoretical, or textbook, examples indicate the vibration amplitudes will be equal in the horizontal and vertical planes. However, experienced vibration analysts know this is often not the signature we see. This is due to the fact there are multiple forces acting on the system, and it may have asymmetric stiffness resulting in highly directional vibration. In these situations, following the wall chart examples without additional phase analysis may send an analyst down the wrong path. In order to be effective in vibration analysis, it is necessary to first resolve the most dominant problem and then reanalyze the machine to determine if there are any further forces that need to be minimized. Properly identifying the most dominant problem can be difficult, so make sure to use all tools available. This case history illustrates a situation in which the vibration signature was far from being textbook due to multiple sources simultaneously acting on the system to produce one on-textbook signature. Getting to the root causes of the problem took multiple iterations.

Read the entire article Balancing Out the Root Cause by Chad Wilcox •

Filed under:
, , by Ana Maria Delgado, CRL