Blog

In today’s fast-paced competitive business world, manufacturers are seeking every competitive advantage they possibly can to increase their production and minimize costs while maintaining product quality. The identification of defects within a machine, reducing equipment failures and unscheduled downtime is increasingly demanded of condition monitoring technologies.
Vibration analysis has proven to be one of the most effective tools for identifying mechanical and electrical faults within machinery. Most vibration programs use a combination of on-line monitoring and offline (walk around) monitoring. Off line programs require the resources of a trained technician to walk from machine to machine to collect the vibration data.
The primary goal of vibration analysis is to identify faults within a machine and then alert personnel that some type of action needs to occur. Problems start to occur when the needed frequency of the data collection is not aligned with the maintenance strategy. A machine’s criticality, its risk priority and its failure modes establish the frequency required; however, far too often frequency is determined by the availability of a local contractor, internal staffing or, even worse, on how much money will be saved if the frequency is changed from monthly to quarterly?

 
Today’s on-line systems have the ability to provide continuous monitoring and can send alarm notifications which can be incorporated into a site’s process control system so operators are alerted of a problem.  Some systems can be configured to distribute emails or even send text messages to specific individuals based on an alarm state.
Most vibration analysis systems today also have the ability to monitor and alarm off-process data such as temperature, pressure, voltage, current, flow or speed and can provide alarming if a process measurement goes outside of a predefined range.
Some of today’s on-line systems can incorporate on-board logic and decision making and some vendors offer machine diagnostics so that data is analyzed and screened for alarm violations automatically.  Data storage can be accomplished by the end user locally or the data can be stored and accessed via the cloud.  Utilizing a cloud server allows Reliability Engineers, Vibration Analysts or Condition Monitoring Contractors the ability to analyze and view data, alarms, trends and reports from anywhere in the world.
The “Industrial Internet of Things” (IIOT) is changing the way vibration data is viewed and managed.  Developments in Artificial Intelligence, Smart Machines, Embedded Intelligence, Machine Learning and Data Analytics are changing and significantly affecting how condition monitoring data is collected, processed and presented to users.

Filed under:
, by Dave Leach CRL CMRT CMRP