As Published by BIC Magazine December 2015 issue
A world-class reliability program is not achieved overnight,  yet you must start somewhere. Your first step is to vest your entire human capital in its success. Reliability is a culture,  not a goal, and it flows from the top down. Therefore, executive sponsorship with integrity and enforcement is a must. Obtain buy-in to the culture of reliability from everybody in your organization, or the effort is doomed to fail. Start with this realization, and your reliability effort will ultimately succeed, and you and your stakeholders will reap its rewards.
The reliability workflow must be well organized and underpinned by a Computerized Maintenance Management System (CMMS). Let’s look at how it works in a world-class program.
Ultrasound analysis detects a bearing fault in a critical motor early in the P-F curve. The analyst enters this data in the CMMS and trends it. The analyst decides to request a work order with recommendations. This is Stage 1 in the work order process.
The work order is now reviewed by both maintenance and operations, thereby ensuring buy-in from operations as well. This is Stage 2. This review process ensures only truly needed or valuable work is approved. Also, older open work orders can be combined with this one to further streamline planned activity on the asset. For instance, an earlier work order was created to align the machine, but the work was never carried out, resulting in the bearing damage the ultrasound analyst has now detected. The review process would catch the older open order and add it to the present order. This would prevent the millwright from going out to align the machine tomorrow only to have a repair technician go out the following week and repair the motor but do no alignment on it. This review process tries to eliminate inefficiency, duplication and detrimental work sequences.
Stage 3 assigns the work order to the maintenance planner for action. Only approved and truly necessary work enters the planner’s backlog. The planner ensures work is properly prioritized. Two things are needed: The criticality ranking of the asset (ascertained from systems’ criticality analysis) and its operational criticality. Both of these factors can be multiplied together to create a more accurate prioritization of the workflow. The planner creates a new work plan if needed and should consult with maintenance supervisors and technicians; valuable insights may be gained into what parts, tools and equipment should be specified in the work plan. Next, the planner orders the maintenance, repair and operating materials (MRO) spares and tooling required to complete the job and verifies the parts are available and kitted (best practice). The planner should not concern himself with scheduling.
Now on to Stage 4: assignment to the scheduler. The scheduler allocates the HR and necessary time to accomplish the task, with a cushion for unforeseen complications. He too should consult with the maintenance supervisor and technicians to obtain cooperation and buy-in to the schedule. Coordination with operations is crucial. Operations  “owns” the equipment and must sign off on the schedule to bring the asset down.
Stage 5 assigns the order to the appropriate maintenance and electrical supervisors, who in turn assign specific tasks in the work plan to their respective repair technicians, electricians and millwrights, and verify MRO spares has delivered the parts kit to the proper location.
Now the work order enters Stage 6: the work execution phase. Once the technicians have completed the work, they report to their supervisors, who return the asset to active duty status in the system. Operations is notified the asset is ready for service, and MRO spares is notified of any unused parts and supplies that should be returned and reintegrated into the MRO spares inventory. Technicians and supervisors should feed their observations and data into the CMMS system.
Stage 7 sees the ultrasound analyst performing follow-up data collection on the asset to ensure all is well. The work now goes back to the planner to be formally closed. This ensures all important data has been accumulated and distributed within the system, enabling key performance indicators to be updated.
As good data accumulates, reliability engineering will use it to improve the entire reliability and maintenance process, discover frequent failure patterns, identify training needs, drive out defects, streamline production and help to improve the design process. As the plant becomes more efficient and productive, greater resources can be allocated to defect elimination and strengthening condition-based maintenance technologies, further impelling the transition to a proactive, reliability-centered culture. Reliability is a never-ending journey of continuous improvement.

by Alan Luedeking CRL CMRP

Guest post by Fred Schenkelberg, Reliability Expert for FMS Reliability
In a previous posting (Five Steps to Building a Better Reliability Culture”, posted on 10/06/2015), I discussed equipment reliability, reliability engineering, and reliability management. But this Holy Trinity of reliability does not operate in a vacuum. To create a sustainable reliability program within an organization requires an understanding of its culture as well as its structure.
Every organization or product is different. The technology, expectations, and environments are all different. Consider two organizations, each of which has a reliability professional well versed in a wide range of reliability tools and processes. One of these professionals provides coaching and mentoring across the organization and encourages every member of the team to learn and use the appropriate tools to make decisions; the other performs nearly all the reliability work independently without support or consultation with team members. It is easy to see that the first organization’s team, being empowered to make decisions about reliability, will be better equipped to meet its reliability goals. 
Thus differences in the basic culture of an organization can lead to vastly different approaches to how reliability is incorporated in its operations. The organization that incorporates reliability into its internal processes starting from the design phase will inevitably experience fewer failures and make more efficient use of its design team and suppliers. How the reliability professional functions within an organization has a strong impact on its culture.
The organizational structure of an organization is also intertwined with its culture. There is no single organizational structure that leads to improved product reliability performance over any other structure. Both centrally and distributed reliability teams have successfully created reliable systems. Even the presence or absence of reliability professionals on staff is not an indicator of reliability performance.
Top-performing organizations use a common product reliability language and possess a culture that encourages and enables individuals to make informed decisions related to reliability. Individuals across the organization know their role to both use and share information essential to making decisions. There is an overriding context for reliability decisions that balances the needs to meet customer expectations for reliability along with other criteria. Alignment exists among the organization’s mission, plans, priorities, and behaviors related to reliability.
Equipment reliability is not the only element that benefits from a proactive culture. Whether top-performing organizations enjoy a proactive culture that naturally includes reliability activities to make decisions or evolved while improving product reliability to become a proactive organization with collateral benefits for other areas of running the business remains unclear. The latter is more likely, since it takes leadership to build and maintain a proactive organization, although some organizations focus on building a proactive reliability program and develop the benefits later in other functions of the business.
Moving the organizational block around the organizational chart may have some value, although it is not directly related to improving reliability. It entails a more fundamental change than developing the reporting structures to transition from a reactive to proactive reliability program.
Once a group of people get settled into a routine way of accomplishing something, it is not a simple matter to change the process. Doing so requires overcoming organizational inertia. For reliability professionals to implement reliability improvements, overcoming this inertia entails working closely with key influencers, making the current reality visible and accessible, and celebrating successes. Although every organization is different and every situation warrants its own approach, these three paths to overcoming inertia may facilitate implementation of any proposed changes.
Overcoming organization inertia is one crucial aspect of changing a reliability culture. Some organizations tend to react to reliability issues. Prototype testing and downing events continue to surprise the team. The worst organizations fall into a cycle of always finding someone to blame. Better organizations set out to work to understand the problem and quickly resolve the issue. Some have better ‘fire departments’ than others. However, responding more quickly is often not the best way to deal with reliability. The very best organizations prevent issues from creating surprises in the first place.
Understanding the reliability culture is the first step to change it.

by Yolanda Lopez

Guest post by Fred Schenkelberg, Reliability Expert for FMS Reliability
Equipment reliability is not the sole responsibility of the maintenance engineer but results from nearly everyone in an organization making decisions that move toward the desired reliability performance. As a reliability professional, I often find it necessary to explore ways to leverage my knowledge of these areas to change the culture within an organization to create a sustainable program that achieves reliable systems time and again.
Proactive organizations are those that work to prevent problems associated with reliability before the product reaches the prototype line stage, let alone a production line. Reactive organizations wait until fails occur, then deal with the consequences. If you are in an organization that tends to react rather than prevent, consider how you should set about changing the culture. Effecting change by itself can often be difficult, but I offer a few ideas that can be useful as you confront this challenge.

  1. Reflect the current situation back to the organization.
    An assessment that examines the current way the organization includes reliability in its discussions and decisions creates a picture of the process, tools, and attitudes that form the current culture concerning reliability. Is the organization simply saying ‘reliability is important’ and then focusing on other priorities? This often occurs when reliability is difficult to measure whereas cost is directly measured. How are tools such as FMEA and ALT being used in the organization? Are they used to just satisfy a checklist or to prioritize work and understand specific failure mechanisms? In either case, the degree to which the organization selects and uses tools to make decisions reflects its overall culture.
    By creating a short report that includes what the organization does well, areas for improvement, and specific recommendations, you can make the current program visible and available for examination. See the ebook Reliability Maturity: Understand and Improve Your Reliability Program available for free download.
  2. Create a vision of what could be.
    With respect to changing a culture, what would success look like? How would you know that the culture has actually changed? You need to be specific and include concrete examples of what technicians are saying, uptime graphs, comments from co-workers, etc. By painting a strong sensory image of what it will feel like when the culture has changed, you make the need for change compelling.
  3. Map the steps needed to attain the goal.
    A compelling vision is the goal, but it is insufficient to motivate change across your organization. A road map or plan detailing both obstacles and milestones can help. The idea is to show how to get started. Explain the first step and how that will lead to the steps necessary to achieve the objective. For changes to an overall reliability program the steps may include improved data analysis, changes in ways data are requested from vendors, creation of a reliability/availability model, and starting to use HALT or FMEA.
  4. Set expectations.
    Within a larger organization expectations should be set for key individuals (e.g., change agents, respected individuals, and community links). This creates a very clear connection between their role in the organization and the proposed changes. A handful of influential individuals working together to achieve change can very likely achieve success in effecting change.
  5. Provide support and encouragement.
    Change is hard work. It involves personal risk, learning new processes or techniques, and moving away from the known to the unknown. Change does not occur with a single meeting or announcement but is an ongoing process. Some best practices include continuously encouraging attempts to move along the proposed path; answering questions, providing training, and shoring up confidence, checking in regularly with key change agents; rewarding successes, and highlighting value obtained along the way.
    The improvement resulting from a change in a reliability program today does not immediately reduce downtime, for example. Often, a significant delay ensues before the benefits are realized. Providing tools and processes to estimate future value is essential. Changing reliability culture may take the coordination of one person and the support of a small team. The change of the conversation to include data, value, and customer reliability expectations may be sufficient to significantly prevent reliability problems. Effecting change will not be easy and will take some time to accomplish. Often, several cycles of equipment improvement projects are needed to create permanent change.
    With a clear assessment of the current situation, a vivid vision for the future, a basic guide to get everyone started, and the regular addition of your energy to continue making progress, change is possible.

by Yolanda Lopez

Purchasing a condition monitoring tool is one step in your journey to implementing a reliability program. Proper training on how to use the new technology,  planning the work correctly,  ensuring the work is completed on schedule and done so correctly is critical to success. Just as important is understanding the risks associated with your equipment, especially when it fails. A criticality assessment along with failure modes and effects analysis will help you understand those risks and determine where to focus your maintenance activities.
I recently spoke to a plant engineer that had purchased alignment and vibration equipment from LUDECA. He had performed several alignments and collected baseline vibration data. The decision was made to start aligning machines that required maintenance and this was a wise choice to ensure failure modes were not inserted into equipment during routine maintenance activities. Unfortunately, this facility had not performed a criticality assessment on their machinery! It turns out that the plant had a catastrophic failure on a piece of equipment that was vital to the overall production processes of the plant. The first comment made was “why did we have this failure when we recently invested in alignment and vibration equipment?”
You must fully understand the risks to safety, production, environment, and profits that your equipment imposes on your facility. As you can see from the example above, not understanding these factors may lead to continued equipment failures and their undesired consequences. To ensure that you do not continue to experience maintenance failures requires that you fully comprehend the risks that each piece of equipment entails. Had this facility understood the failure modes and the (criticality/risk) impact each machine posed, they would have been able to focus their maintenance efforts where they were most needed to keep the plant efficiently operational.
As part of this endeavor, it is important to apply condition monitoring (vibration analysis and properly targeted alignment, among other things) on the equipment within your plant, because it is extremely difficult to be reliable without doing so. However, you must understand how and where to direct those efforts to ensure that unwanted risks are reduced. Understanding how your equipment can fail (FMEA), the consequences of those failures (RCM or risk assessment), what equipment is most important to keep your plant operational (criticality assessment) are all important to ensure that your maintenance efforts are properly focused. These efforts may avoid the experience this facility had and prevent your plant from experiencing the same unwanted effects.

by Frank Seidenthal CRL

I have travelled to various industries throughout the United States and recently in Australia to educate reliability technicians,  engineers and maintenance groups in the area of reliability. I have found that almost all are experiencing the same challenges with regards to sustaining programs. The only thing that’s different is the accent. Although I have encountered a variety of issues during my travels,  a few always seem to be at the top of the list:

  • Communication
  • Not our “first go round”
  • Opportunity to implement some of the lessons learned
  • Not taking the “first step”

It is said that the majority of all programs fail. If this is true, then what is/are the reason(s)? What’s the common denominator? Many times it comes down to creating a shared goal and communicating effectively with our groups. As simple as this may sound, many among the group are driven in different directions and not working as a unit to reach the common goal.
Without a specific, clearly communicated goal we are destined to become another bad statistic. Without a goal there’s no passion and without passion no drive for success.
The following guideline may be helpful to creating a better effective goal.
Let’s be S.M.A.R.T when establishing a reliability Program.

  • S – Specific (be specific). If it’s a reliability program, what does it need to be successful? Correct parameters, alarms, reporting etc.
  • M – Measurable. You must be able to see if you’re making progress toward the goal.
  • A – Action Steps. What can you do (first step) to launch your program in the right direction?
  • R – Realistic. Stretch yourself, don’t let limiting beliefs prevent you from setting a goal. But don’t be unrealistic. You can always stretch out a little farther later.
  • T – Time period. Set a specific time period. Your expectations toward achieving your goals cannot be open-ended.

by Pete Oviedo Jr

The scenario: You have just been informed that a corporate reliability initiative has begun. Your new assignment is to implement a vibration analysis program. You are disconcerted,  because you are not sure how to implement this new assignment or where to seek help. Many organizations implement a reliability initiative because their competition has already done so or management has become convinced of the financial value that can be gained from it. Unfortunately,  as with most things in life, the devil is always in the details.
Company culture plays a critical role in the successful implementation of a reliability program. This shouldn’t be underestimated. Some companies implement program after program, each with the best of intentions. The objectives are always to increase operating efficiencies, achieve cost reductions, capacity improvements, shrink required manpower, etc. Many of these efforts fail after a few months because the program is replaced by something new, key management individuals did not support it, inadequate funding was provided, proper awareness not instilled and many other reasons. The new initiative falls into an abyss and is quickly forgotten. Most seasoned employees who work in these organizations have seen this happen time after time over their careers.
Many employees and managers thus adopt a “wait and see” approach. This trait is learned after years of seeing efforts start and quickly fail. Why join the “flavor of the month” club and devote focus to something that will soon be replaced? It requires less energy to wait and see if the new program will remain a company priority and become successful. The financial value to your business is clear, but will only be realized if the program is correctly implemented and sustained. Senior management has to ensure that everyone understands this effort is not a passing fad. Key signs of support must be given with results-driven implementation.
Don’t let the vibration analysis program and other reliability efforts become a “flavor of the month” effort. Become the champion that promotes the value of these efforts and helps to ensure the results are implemented. Doing so can reap great rewards for yourself and pay great dividends for your company. Seek support and advice from technology vendors, co-workers and the many resources available. You are not alone! Many individuals have been where you are now or faced the same challenges within their organization.
The road to success can be long and difficult to traverse. However, with proper implementation, persistence and senior management support you can get there. Persevere!

by Dave Leach CRL CMRT CMRP